

产品规格书

Product Specification Sheet

TOP-BIDI-155M-20AD/BD

RoHS Compliant 155M 1310/1550nm(1550/1310nm) 20KM Transceiver

PRODUCT FEATURES

- Up to155Mb/s data links
- FP laser transmitter
- PIN photo-detector
- Up to 20km on 9/125µm SMF
- Hot-pluggable SFP footprint
- BIDILC/UPC type pluggable optical interface
- Low power dissipation
- Metal enclosure, for lower EMI
- RoHS compliant and lead-free
- Single +3.3V power supply
- Support Digital Diagnostic Monitoring interface
- Compliant with SFF-8472
- Case operating temperature Commercial:0°Cto +70°C Extended:-10°Cto +80°C Industrial:-40°Cto+85°C

APPLICATIONS

- Switch to Switch Interface
- Fast Ethernet
- Switched Back plane Applications
- Router/Server Interface
- Other Optical Links

STANDARD

- SFP+MSA Compliant
- SFF-8472reversion9.5compliant
- IEEE802.3-2005compliant
- Telcordia GR-468-COREcompliant
- FCC47CFRPart15,Class B compliant
- FDA21CFR1040.10and1040.11,class1compliant
- RoHS compliant

TOP-BIDI-155M-20AD/BD optical transceivers are designed for optical interfaces for data communications with

single mode fiber(SMF). The transceiver designs are optimized for high performance and cost effective to supply customers the best solutions for telecom applications.

RX+/-Post Amp **PIN TIA** LOS TX+/-LD Driver LD -TX Dis -TX Fault-Pow TX Pow Ibias Tem ž VCC A/D Convertor

EEPROM

Memory

FUNCTIONAL DIAGRAM

SDA

SCL

Ordering information

Product part Number	Data Rate (Mbps)	Media	Wavelength (nm)	Transmission Distance(km)	(Т	tureRange case) 〔℃)
TOP-BIDI-155M- 20AD/BD-c	155	Singlemod e fiber	1310/1550(1550/131 0)	20	0~70	commercial
TOP-BIDI-155M- 20AD/BD-e	155	Singlemod e fiber	1310/1550(1550/131 0)	20	-10~80	extended
TOP-BIDI-155M- 20AD/BD-i	155	Singlemod e fiber	1310/1550(1550/131 0)	20	-45~85	industrial

Digital diagnostic monitor interface

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min.	Max.	Unit	Note
Supply Voltage	Vcc	-0.5	4.0	V	
Storage Temperature		-40	85	°C	
Relative Humidity		5	95	%	

Note: Stress in excess of the maximum absolute ratings can cause permanent damage to the module

GERERAL OPERATING CHARACTERISTICS

Parameter	Symbol	Min.	Туре	Max.	Unit	Note
Data Rate			155		Mb/s	
Supply Voltage	Vcc	3.13	3.3	3.47	V	
Supply Current	lcc₅			280	mA	
		0		70	°C	TOP-BIDI-155M-20AD/BD -c
		-10		80	°C	TOP-BIDI-155M-20AD/BD -e
		-40		85	°C	TOP-BIDI-155M-20AD/BD -i

ELECTRICAL INPUT/OUTPUT CHARACTERISTICS

Parameter		Min.	Туре	Max.	Unit	Note
Diff.input voltage swing		120		820	mVpp	1
Н	VIH	2.0		Vcc+0.3	V	
L	VIL	0		0.8		
Н	VOH	2.0		Vcc+0.3	V	2
L	VOL	0		0.8		
Input Diff.Impedance			100		Ω	
	wing H L H L	wingHLVILHVOHLVOL	wing 120 H VIH 2.0 L VIL 0 H VOH 2.0 L VOH 0	wing 120 H VIH 2.0 L VIL 0 H VOH 2.0 L VOH 0	wing 120 820 H VIH 2.0 Vcc+0.3 L VIL 0 0.8 H VOH 2.0 Vcc+0.3 L VOH 0 0.8 L VOH 0 0.8	wing 120 820 mVpp H VIH 2.0 Vcc+0.3 V L VIL 0 0.8 V H VOH 2.0 Vcc+0.3 V L VIL 0 0.8 V L VOH 2.0 Vcc+0.3 V

Receiver

Parameter		Symbol	Min.	Туре	Max.	Unit	Note
Diff.output voltage	swing		340	650	800	mVpp	3
	Н	VOH	2.0		Vcc+0.3	V	_
RxLOS Output	L	VOL	0		0.8		2

Note1)TD+/-areinternallyACcoupled with 100Ω differential termination inside the module. Note2)TxFault and RxLOS are open collector outputs, which should be pulled up with 4.7k to10kΩ resistors on the host board. Pull up voltage between 2.0 VandVcc+0.3 V. Note3)RD+/- outputs are internally AC coupled, and should be terminated with100Ω(differential)at the user SERDES.

OPTICAL CHARACTERISTICS

Transmitter

Parameter	Symbol	Min.	Туре	Max.	Unit	Note
Operating Wavelength	λC	1270	1310	1360		
		1500	1550	1570	nm	
Ave. output power(Enabled)	Ро	-14		-8	dBm	1
Extinction Ratio	ER	8.2			dB	1
RMS spectral width	Δλ			4	nm	
Rise/Falltime(20%~80%)	Tr/Tf			0.26	ps	2
Output Eye Mask	Telcordia	GR-253-C	OREandIT	U-TG.957	compatible	;

Note (1):Measureat2²23-1 NRZPRBS pattern Note (2): Transmitter eye mask definition

Receiver

Parameter	Symbol	Min.	Туре	Max.	Unit	Note
Operating Wavelength		1530	1550	1570	nm	
		1270	1310	1360		
Sensitivity	Psen			-32	dBm	3
Min. overload	Pimax	-8			dBm	
LOS Assert	Pa	-45			dBm	
LOS De-assert	Pd			-35	dBm	
LOS Hysteresis	Pd-Pa	0.5		6	dB	

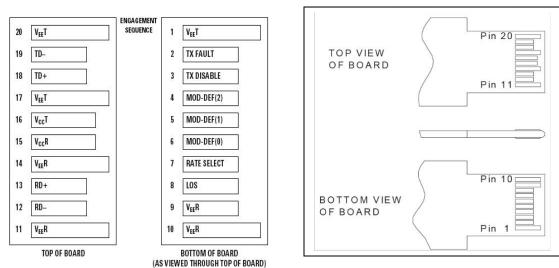
Note1)Measured at10.3125b/swithPRBS231–1NRZtest pattern. Note2) 20%~80% Note3) Under the ER worst case, measured at10.3125Gb/swithPRBS231- 1NRZtest pattern for BER<1x10-12

Digital Diagnostic Functions

TOP-BIDI-155M-20AD/BD transceivers support the 2-wire serial communication protocol as defined in the SFPMSA. It is very closely related to the E2PROM defined in the GBIC standard, with the same electrical specifications.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

Additionally, TOP-BIDI-155M-20AD/BD transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage.



It also defines a sophisticated system of alarm and warning flags, which alert send-users when particular operating parameters are outside of a factory set normal range.

The SFPMSA defines a 256-byte memory map inE2PROM that is accessible overa2-wire serial interface at the 8 bit address 1010000X(A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X(A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL,ModDef1)is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E2PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal(SDA,ModDef2)is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

Digital diagnostics for the TOP-BIDI-155M-20AD/BD are Internally calibrated by default.

Pin Definitions and Functions

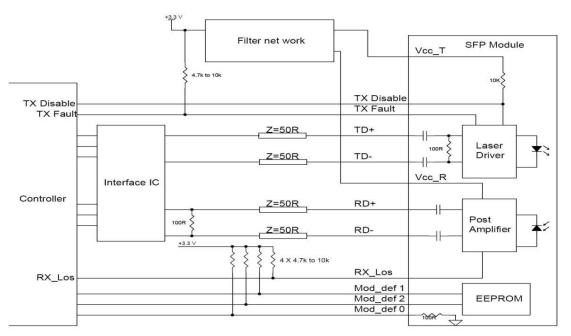
TOPSTAR TECHNOLOGY INDUSTRIAL CO., LIMITED

PIN #	Name	Function	Notes
1	VeeT	Module transmitter ground	Note1
2	Tx Fault	Module transmitter fault	Note 2
3	Tx Disable	Transmitter Disable; Turns off transmitter laser output	Note 3
4	SDL	2 wire serial interface data input/output (SDA)	
5	SCL	2 wire serial interface clock input (SCL)	
6	MOD-ABS	Module Absent, connect to VeeR or VeeT in the module	Note 2
7	RS0	Rate select0,optionally control SFP+ receiver. When high, input data rate >4.5Gb/ s;when low, input data rate <=4.5Gb/s	
8	LOS	Receiver Loss of Signal Indication	Note4
9	RS1	Rate select0,optionally control SFP+ transmitter. When high, input data rate >4.5Gb/s;when low, input data rate <=4.5Gb/s	
10	VeeR	Module receiver ground	Note 1
11	VeeR	Module receiver ground	Note 1
12	RD-	Receiver inverted data out put	
13	RD+	Receiver non-inverted data out put	
14	VeeR	Module receiver ground	Note 1
15	VccR	Module receiver 3.3V supply	
16	VccT	Module transmitter 3.3V supply	
17	VeeT	Module transmitter ground	Note 1
18	TD+	Transmitter inverted data out put	
19	TD-	Transmitter non-inverted data out put	
20	VeeT	Module transmitter ground	Note1

Note1)The module ground pins shall be isolated from the module case.

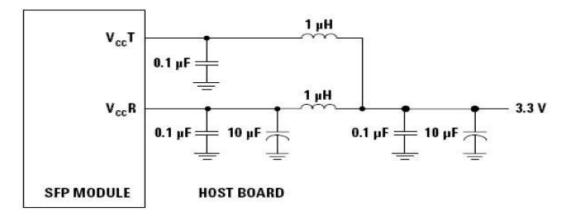
Note2)This pin is an open collector/drain output pin and shall be pulled up with

4.7K-10Kohmsto Host_Vcc on the host board.

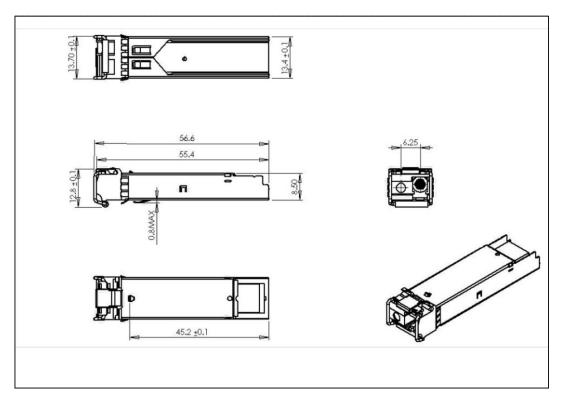

Note3)This pin shall be pulled up with 4.7K-10Kohms to VccT in the module.

Note4)This pin is an open collector/drain output pin and shall be pulled up with

4.7K-10Kohms to Host_Vcc on the host board. In FC designated as RX_LOS, in SONET


designated as LOS, and in Ethernet designated at Signal Detect.

TYPICAL INTERFACE CIRCUIT



Recommended power supply filter

Note: Inductors with DC resistance of less than1 Ω should be used in order to maintain the required voltage at the SFP input pin with3.3V supply voltage. When there commended supply filtering network is used, hot plugging of the SFP transceiver module will result in an in rush current of no more than 30m A greater than the steady state value

PACKAGE DIMENSIONS

Topstar Technology Industrial Co., Ltd

Add: F5, Rongcheng Building, 28 Yayuan Road Wuhe Community, BanTian Street, Shenzhen, China

> Tel: +86 755 8255 2969 Email:lisa@topsfp.com Skype: lisalin6565 Whatsapp: +86 13798265065 Wechat: 251081707

Facebook and Linked in: Topstar Technology Industrial Co., Ltd

